Α

(Printed Pages 4)

(20222)

Roll No.

BCA-V Sem.

18024 (CV-III)

B.C.A. Examination, Dec.-2021 Numerical Methods (BCA-504)

Time: 11/2 Hours |

[Maximum Marks: 75

Note: Attempt questions from **all** Sections as per instructions. Calculator is allowed.

Section-A

(Very Short Answer Questions)

Note: Attempt any **two** questions. Each question carries **7.5** marks.

$$2 \times 7.5 = 15$$

- Find a root of the eq f(x)= x³-4x-9=0
 using the bisection method in four
 iterations.
- Find the form of the function from following given data:

X :	0	1	2	3	4
f(x):	3	6	11	18	27

P.T.O.

- 3. Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by Trapezoidal Rule.
- 4. Use Euler's Method with h=0.1 to find the solution of $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 in the range $0 \le x \le 0.5$
- Solve by Gauss-elimination method.

$$2x+y+4z=12$$

$$8x-3y+2z=23$$

$$4x+11y-z=33$$

Section-B (Short Answer Questions)

Note: Attempt any **one** question out of the following three questions. Each question carries **15** marks. 1×15=15

 By means of Newton's divided difference formula find the value of f(8) and f(15) from the following table.

x: 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028

7. From the given table. Find $\frac{dy}{dx}$ at x=1.2.

18024(CV-III)/2

X	У
1.0	2.7183
1.2	3.3201
1.4	4.0552
1.6	4.9530
1.8	6.0 496
2.0	7.38 91

8. Using Picard's method of successive approximation obtain a solution upto fourth approximation of the equation.

$$\frac{dy}{dx} = y + x, \quad (0) = 0$$
Section-C

(Detailed Answer Questions)

Note: Attempt any **two** questions out of the following five questions. Each question carries **22.5** marks.

https://www.ccsustudy.com $2\times22.5=45$

- 9. Find a real root of the equation x^3-x^2- 2=0 by False Position Method.
- Interpolate by mean of Gauss's formula the population for the year 1936, given the following table.

18024(CV-III)/3

P.T.O.

Year (x)	Population (y)
	(in thousand)
1901	12
1911	15
1921	20
1931	27
1941	39
1951	52

- 11. Find the value of the integral $\int_{0}^{1} \frac{dx}{1+x}$ by using Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule.
- 12. Using Runge-Kiltta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2, 0.4.
- 13. Find the solution of the system by Gauss-Seidel Method.

$$83x+11y-4z=95$$

 $7x+52y+13z=104$
 $3x+8y+29z=71$

18024(CV-III)/4